题目内容
【题目】某企业生产并销售某种产品,假设销售量与产量相等,如图中的折线ABD、线段CD分别表示该产品每千克生产成本(单位:元)、销售价(单位:元)与产量x(单位:kg)之间的函数关系.
(1)请解释图中点D的横坐标、纵坐标的实际意义;
(2)求线段AB所表示的与x之间的函数表达式;
(3)当该产品产量为多少时,获得的利润最大?最大利润是多少?
【答案】(1)点D的横坐标、纵坐标的实际意义:当产量为130kg时,该产品每千克生产成本与销售价相等,都为42元;(2)y=﹣0.2x+60(0≤x≤90);(3)当该产品产量为75kg时,获得的利润最大,最大值为2250.
【解析】
试题分析:(1)点D的横坐标、纵坐标的实际意义:当产量为130kg时,该产品每千克生产成本与销售价相等,都为42元;
(2)根据线段AB经过的两点的坐标利用待定系数法确定一次函数的表达式即可;
(3)利用总利润=单位利润×产量列出有关x的二次函数,求得最值即可.
试题解析:(1)点D的横坐标、纵坐标的实际意义:当产量为130kg时,该产品每千克生产成本与销售价相等,都为42元;
(2)设线段AB所表示的与x之间的函数关系式为,∵的图象过点(0,60)与(90,42),∴,∴解得:,
∴这个一次函数的表达式为:y=﹣0.2x+60(0≤x≤90);
(3)设与x之间的函数关系式为,
∵经过点(0,120)与(130,42),∴,解得:,
∴这个一次函数的表达式为(0≤x≤130),
设产量为xkg时,获得的利润为W元,
当0≤x≤90时,W==,
∴当x=75时,W的值最大,最大值为2250;
当90≤x130时,W==,
∴当x=90时,W=,
由﹣0.6<0知,当x>65时,W随x的增大而减小,∴90≤x≤130时,W≤2160,
因此当该产品产量为75kg时,获得的利润最大,最大值为2250.