题目内容
某学校对教室采用药熏消毒法进行消毒,已知药物燃烧时,室内每立方米空气中的含药量y(毫克)与时间x(分钟)成正比,药物燃烧完后,y与x成反比(如图所示)现测得药物8分钟燃完,此时室内每立方米空气中的含药量为6毫克,请根据题中所提供的信息,解答下列问题
1.药物燃烧时,y关于x的函数关系式为 。
自变量x的取值范围是 。药物燃烧完后,
y关于x的函数关系式为 。
2.研究表明,当空气中每立方米的含药量低于1.6毫克时,学生
方可进教室,那么从消毒开始,至少需要经过 分钟后,学生
才能进教室。
3.研究表明,当空气中每立方米的含药量不低于3毫克且持续时间
不低于10分钟时,才能有效地杀灭空气中的病菌,那么此次消毒是否
有效,为什么?
1.设药物燃烧时y关于x的函数关系式为y=k1x(k1>0)代入(8,6)为6=8k1
∴k1=设药物燃烧后y关于x的函数关系式为y=(k2>0)代入(8,6)为6=
∴k2=48∴药物燃烧时y关于x的函数关系式为y=x(0≤x≤8)药物燃烧后y关于x的函数关系式为y=(x>8)
2.结合实际,令y=中y≤1.6得x≥30
即从消毒开始,至少需要30分钟后学生才能进入教室.(3分)
3.把y=3代入y=x,得:x=4
把y=3代入y=,得:x=16
∵16-4=12
所以这次消毒是有效的.(4分)
【解析】(1)药物燃烧时,设出y与x之间的解析式y=k1x,把点(8,6)代入即可,从图上读出x的取值范围;药物燃烧后,设出y与x之间的解析式y=,把点(8,6)代入即可;
(2)把y=1.6代入反比例函数解析式,求出相应的x;
(3)把y=3代入正比例函数解析式和反比例函数解析式,求出相应的x,两数之差与10进行比较,>等于10就有效.