题目内容

【题目】已知:二次函数y=x2+bx+c的图象与x轴交于A,B两点,其中A点坐标为(﹣3,0),与y轴交于点C,点D(﹣2,﹣3)在抛物线上.

(1)求抛物线的解析式;
(2)抛物线的对称轴上有一动点P,求出PA+PD的最小值;
(3)若抛物线上有一动点P,使三角形ABP的面积为6,求P点坐标.

【答案】
(1)解:因为二次函数y=x2+bx+c的图象经过A(﹣3,0),D(﹣2,﹣3),所以

解得

所以一次函数解析式为y=x2+2x﹣3.


(2)解:∵抛物线对称轴x=﹣1,D(﹣2,﹣3),C(0,﹣3),

∴C、D关于x轴对称,连接AC与对称轴的交点就是点P,

此时PA+PD=PA+PC=AC= = =3


(3)解:设点P坐标(m,m2+2m﹣3),

令y=0,x2+2x﹣3=0,

x=﹣3或1,

∴点B坐标(1,0),

∴AB=4

∵SPAB=6,

4|m2+2m﹣3|=6,

∴m2+2m﹣6=0,m2+2m=0,

∴m=0或﹣2或1+ 或1﹣

∴点P坐标为(0,﹣3)或(﹣2,﹣3)或(1+ ,3)或(1﹣ ,3).


【解析】(1)把A、D两点坐标代入二次函数y=x2+bx+c,解方程组即可解决.(2)利用轴对称找到点P,用勾股定理即可解决.(3)根据三角形面积公式,列出方程即可解决.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网