题目内容

【题目】如图,已知△ABC和△DEF是两个边长都为8cm的等边三角形,且 BDCF都在同一条直线上,连接ADCE

1)求证:四边形ADEC是平行四边形

2)若BD=3cm, ABC沿着BF的方向以每秒1cm的速度运动,设△ABC运动时间为t

①当t等于多少秒时,四边形ADEC为菱形;

②点B运动过程中,四边形ADEC有可能是矩形吗?若可能,请画出图形,并求出t的值;若不可能,请说明理由.

【答案】1)证明见解析,(2t=3秒时,ADEC是菱形,②当t=11秒时,四边形ADEC是矩形.图形见解析.

【解析】

1)因为△ABC和△DEF是两个边长为8cm的等边三角形,所以AC=DF,又∠ACD=FDE=60°,可得ACDE,所以四边形ADEC是平行四边形;
2)①根据有一组邻边相等的四边形是菱形即可得到结论;
②根据有一个角是直角的平行四边形是矩形即可得到结论.

1)证明:∵△ABC和△DEF是两个边长为8cm的等边三角形.
AC=DE,∠ACD=FDE=60°,

ACDE

∴四边形ADEC是平行四边形.


2)解:①当t=3秒时,ADEC是菱形,

∵当t=3秒时,此时BD重合,∴AD=DE

ADEC是菱形,

②若平行四边形ADEC是矩形,则∠ADE=90°


∴∠ADC=90°-60°=30°
同理∠DAB=30°=ADC
BA=BD
同理FC=EF
FB重合,
t=8+3)÷1=11秒,
∴当t=11秒时,四边形ADEC是矩形.

练习册系列答案
相关题目

【题目】某校兴趣小组想测量一座大楼AB的高度.如图6,大楼前有一段斜坡BC,已知BC的长为12米,它的坡度i=1:.在离C点40米的D处,用测角仪测得大楼顶端A的仰角为37°,测角仪DE的高为1.5米,求大楼AB的高度约为多少米?(结果精确到0.1米)

(参考数据:sin37°0.60,cos37°0.80,tan37°0.75,1.73.)

【答案】33.3.

【解析】

试题分析:延长AB交直线DC于点F,过点E作EHAF,垂足为点H,在RtBCF中利用坡度的定义求得CF的长,则DF即可求得,然后在直角AEH中利用三角函数求得AF的长,进而求得AB的长.

试题解析:延长AB交直线DC于点F,过点E作EHAF,垂足为点H.

在RtBCF中, =i=1:设BF=k,则CF=k,BC=2k.

BC=12,k=6,BF=6,CF=DF=DC+CF,DF=40+在RtAEH中,tanAEH=AH=tan37°×(40+37.8(米),BH=BF﹣FH,BH=6﹣1.5=4.5.AB=AH﹣HB,AB=37.8﹣4.5=33.3.

答:大楼AB的高度约为33.3米.

考点:1.解直角三角形的应用-仰角俯角问题;2.解直角三角形的应用-坡度坡角问题.

型】解答
束】
24

【题目】为迎接安顺市文明城市创建工作,某校八年一班开展了“社会主义核心价值观、未成年人基本文明礼仪规范”的知识竞赛活动,成绩分为A、B、C、D四个等级,并将收集的数据绘制了两幅不完整的统计图.请你根据图中所给出的信息,解答下列各题:

(1)求八年一班共有多少人;

(2)补全折线统计图;

(3)在扇形统计图中等极为“D”的部分所占圆心角的度数为________

(4)若等级A为优秀,求该班的优秀率.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网