题目内容
【题目】如图,已知P是⊙O外一点,Q是⊙O上的动点,线段PQ的中点为M,连接OP,OM.若⊙O的半径为2,OP=4,则线段OM的最小值是( )
A.0
B.1
C.2
D.3
【答案】B
【解析】解:设OP与⊙O交于点N,连结MN,OQ,如图,
∵OP=4,ON=2,
∴N是OP的中点,
∵M为PQ的中点,
∴MN为△POQ的中位线,
∴MN=OQ=×2=1,
∴点M在以N为圆心,1为半径的圆上,
当点M在ON上时,OM最小,最小值为1,
∴线段OM的最小值为1.
故选B.
【考点精析】通过灵活运用三角形中位线定理和点和圆的三种位置关系,掌握连接三角形两边中点的线段叫做三角形的中位线;三角形中位线定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半;圆和点的位置关系:以点P与圆O的为例(设P是一点,则PO是点到圆心的距离),P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O内,PO<r即可以解答此题.
练习册系列答案
相关题目