题目内容
【题目】某种商品每件的进价为30元,在某段时间内若以每件x元出售,可卖出(100﹣x)件,则将每件的销售价定为________元时,可获得最大利润.
【答案】65
【解析】
本题是营销问题,基本等量关系:利润=每件利润×销售量,每件利润=每件售价-每件进价.再根据所列二次函数求最大值.
设最大利润为w元,
则w=(x-30)(100-x)=-(x-65)2+1225,
∵-1<0,0<x<100,
∴当x=65时,二次函数有最大值1225,
∴定价是65元时,利润最大.
故答案为:65.
练习册系列答案
相关题目