题目内容
如图,PD⊥AB,PE⊥AC,垂足分别为D、E,且PD=PE,则△APD与△APE全等的理由是( )
A. SAS B. AAA C. SSS D. HL
如图1,△ABC为等边三角形,三角板的60°角顶点与点C重合,三角板的一直角边与AB交于点D,在三角板斜边上取一点F,使CF=CD,线段AB上取点E,使∠DCE=30°,连接AF,EF.
(1)求证:△ACF≌△BCD;
(2)写出线段DE与EF之间的数量关系,并说明理由;
(3)如图2,若△ABC为等腰直角三角形,∠ACB=90°,三角板的90°角顶点与点C重合,三角板的一直角边与AB交于点D,在三角板另一直角边上取一点F,使CF=CD,在线段AB上取点E,使∠DCE=45°,连接AF,EF.请写出三条线段AE,ED,DB之间的数量关系,并说明理由.
-(-4)= __________.
如图,在平面直角坐标系中,已知A(-3,-4),B(0,-2).
(1)△OAB绕O点旋转180°得到△OA1B1,请画出△OA1B1,并写出A1,B1的坐标;
(2)判断以A,B,A1,B1为顶点的四边形的形状,并说明理由.
如图,已知长方形ABCD中AB = 8cm,BC = 10cm,在边CD上取一点E,将△ADE折叠,使点D恰好落在BC边上的点F,则CF的长为( )
A. 2cm B. 3cm C. 4cm D. 5cm
下列各组长度的线段能组成直角三角形的是( )
A. a=2,b=3,c=4 B. a=4,b=4,c=5 C. a=5,b=6,c=7 D. a=5,b=12,c=13
为调查达州市民上班时最常用的交通工具的情况,随机抽取了部分市民进行调查,要求被调查者从“A:自行车,B:电动车,C:公交车,D:家庭汽车,E:其他”五个选项中选择最常用的一项.将所有调查结果整理后绘制成如下不完整的条形统计图和扇形统计图,请结合统计图回答下列问题.
(1)本次调查中,一共调查了 名市民;扇形统计图中,B项对应的扇形圆心角是 度;补全条形统计图;
(2)若甲、乙两人上班时从A,B,C,D四种交通工具中随机选择一种,请用列表法或画树状图的方法,求出甲、乙两人恰好选择同一种交通工具上班的概率.
﹣2018的相反数是( )
A. ﹣2018 B. 2018 C. ±2018 D. ﹣
二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①a<0;②a-b+c<0;③b2-4ac>0;④2a+b>0,其中正确的是( )
A. ①②③④ B. ②③④ C. ①②③ D. ①②④