题目内容

已知抛物线ya(xm)2ny轴交于点A,它的顶点为点B,点AB关于原点O的对称点分别为CD.若ABCD中任何三点都不在一直线上,则称四边形ABCD为抛物线的伴随四边形,直线AB为抛物线的伴随直线.

(1)如图1,求抛物线y=(x-2)2+1的伴随直线的解析式.

(2)如图2,若抛物线ya(xm)2n(m>0)的伴随直线是yx-3,伴随四边形的面积为12,求此抛物线的解析式.

(3)如图3,若抛物线ya(xm)2n的伴随直线是y=-2xb(b>0),且伴随四边形ABCD是矩形.

①用含b的代数式表示mn的值;

②在抛物线的对称轴上是否存在点P,使得△PBD是一个等腰三角形?若存在,请直接写出点P的坐标(用含b的代数式表示),若不存在,请说明理由.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网