题目内容
已知△ABC是正三角形,正方形EFPN的顶点E、F在边AB上,顶点N在边AC上.(1)如图,在正三角形ABC及其内部,以点A为位似中心,画出正方形EFPN的位似正方形E′F′P′N′,且使正方形E′F′P′N′的面积最大(不谢画法,但要保留画图痕迹);
(2)若正三角形ABC的边长为3+2
3 |
分析:(1)利用位似图形的性质,作出正方形EFPN的位似正方形E′F′P′N′,如答图①所示;
(2)根据正三角形、正方形、直角三角形相关线段之间的关系,利用等式E′F′+AE′+BF′=AB,列方程求得正方形E′F′P′N′的边长.
(2)根据正三角形、正方形、直角三角形相关线段之间的关系,利用等式E′F′+AE′+BF′=AB,列方程求得正方形E′F′P′N′的边长.
解答:解:(1)如图①,正方形E′F′P′N′即为所求.
(2)设正方形E′F′P′N′的边长为x,
∵△ABC为正三角形,
∴AE′=BF′=
x.
∵E′F′+AE′+BF′=AB,
∴x+
x+
x=3+2
,
∴解得:x=3,
故答案为:3.
(2)设正方形E′F′P′N′的边长为x,
∵△ABC为正三角形,
∴AE′=BF′=
| ||
3 |
∵E′F′+AE′+BF′=AB,
∴x+
| ||
3 |
| ||
3 |
3 |
∴解得:x=3,
故答案为:3.
点评:本题考查了以位似变换、正三角形、正方形、直角三角形边角性质等重要知识点,有一定的难度.
练习册系列答案
相关题目
教材中第25章锐角的三角比,在这章的小结中有如下一段话:锐角三角比定量地描述了在直角三角形中边角之间的联系.在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确定,因此边长与角的大小之间可以相互转化.
类似的,可以在等腰三角形中建立边角之间的联系,我们定义:等腰三角形中底边与腰的比叫做顶角的正对(sad).如图,在△ABC中,AB=AC,顶角A的正对记作sadA,这时
sad A=.容易知道一个角的大小与这个角的正对值也是相互唯一确定的.
根据上述对角的正对定义,解下列问题:
(1)sad 的值为( ▼ )
(2)对于,∠A的正对值sad A的取值范围是 ▼ .
(3)已知,其中为锐角,试求sad的值.
类似的,可以在等腰三角形中建立边角之间的联系,我们定义:等腰三角形中底边与腰的比叫做顶角的正对(sad).如图,在△ABC中,AB=AC,顶角A的正对记作sadA,这时
sad A=.容易知道一个角的大小与这个角的正对值也是相互唯一确定的.
根据上述对角的正对定义,解下列问题:
(1)sad 的值为( ▼ )
A. | B.1 | C. | D.2 |
(3)已知,其中为锐角,试求sad的值.
教材中第25章锐角的三角比,在这章的小结中有如下一段话:锐角三角比定量地描述了在直角三角形中边角之间的联系.在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确定,因此边长与角的大小之间可以相互转化.
类似的,可以在等腰三角形中建立边角之间的联系,我们定义:等腰三角形中底边与腰的比叫做顶角的正对(sad).如图,在△ABC中,AB=AC,顶角A的正对记作sadA,这时
sad A=.容易知道一个角的大小与这个角的正对值也是相互唯一确定的.
根据上述对角的正对定义,解下列问题:
(1)sad 的值为( ▼ )
A. | B.1 | C. | D.2 |
(3)已知,其中为锐角,试求sad的值.