题目内容

【题目】完成下面推理过程:
如图,已知DE∥BC,DF、BE分别平分∠ADE、∠ABC,可推得∠FDE=∠DEB的理由:
∵DE∥BC(已知)
∴∠ADE= .(
∵DF、BE分别平分∠ADE、∠ABC,
∴∠ADF=
∠ABE= .(
∴∠ADF=∠ABE
∴DF∥ .(
∴∠FDE=∠DEB.(

【答案】∠ABC;两直线平行,同位角相等;∠ADE;∠ABC;角平分线定义;BE;同位角相等,两直线平行;两直线平行,内错角相等
【解析】解:理由是:∵DE∥BC(已知),
∴∠ADE=∠ABC(两直线平行,同位角相等),
∵DF、BE分别平分ADE、∠ABC,
∴∠ADF=∠ADE,
∠ABE=∠ABC(角平分线定义),
∴∠ADF=∠ABE,
∴DF∥BE(同位角相等,两直线平行),
∴∠FDE=∠DEB(两直线平行,内错角相等),
故答案为:∠ABC,两直线平行,同位角相等,∠ADE,∠ABC,角平分线定义,BE,同位角相等,两直线平行,两直线平行,内错角相等.
根据平行线的性质得出∠ADE=∠ABC,根据角平分线定义得出∠ADF=∠ADE,∠ABE=∠ABC,推出∠ADF=∠ABE,根据平行线的判定得出DF∥BE即可.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网