题目内容

在直角坐标系中,O为坐标原点,A(-2,2),在x轴上确定一点P,使△AOP为等腰三角形,则符合条件的点P共有


  1. A.
    1个
  2. B.
    2个
  3. C.
    3个
  4. D.
    4个
D
分析:使△AOP为等腰三角形,只需分两种情况考虑:OA当底边或OA当腰.当OA是底边时,则点P即为OA的垂直平分线和x轴的交点;当OA是腰时,则点P即为分别以O、A为圆心,以OA为半径的圆和x轴的交点(点O除外).
解答:(1)若AO作为腰时,有两种情况,当A是顶角顶点时,P是以A为圆心,以OA为半径的圆与x轴的交点,共有1个,若OA是底边时,P是OA的中垂线与x轴的交点,有1个
当O是顶角顶点时,P是以O为圆心,以OA为半径的圆与x轴的交点,有1个;
(2)若OA是底边时,P是OA的中垂线与x轴的交点,有1个.
以上4个交点没有重合的.故符合条件的点有4个.
故选D.
点评:此题主要考查了坐标与图形的性质及等腰三角形的判定;对于底和腰不等的等腰三角形,若条件中没有明确哪边是底哪边是腰时,应在符合三角形三边关系的前提下分类讨论.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网