题目内容

精英家教网如图,在等腰梯形ABCD中,AD∥BC,AD=3,BC=5,AC、BD相交于O点,且∠BOC=60°,顺次连接等腰梯形各边中点所得四边形的周长是(  )
A、24B、20C、16D、12
分析:根据等腰梯形对角线相等和中位线定理解答.
解答:精英家教网解:∵梯形ABCD是等腰梯形,
∴AC=BD,AB=CD,BC=BC,
∴△ABC≌△DCB,
∴∠BAC=∠BDC,
∵∠AOB=∠COD,
∴∠ABD=∠ACD,
∵AB=CD,
∴△AOB≌△DOC,
∴OB=OC,
∵在△BOC中,∠BOC=60°,∠OBC=∠OCB=
1
2
(180°-60°)=60°,
∴OB=OC=BC=5,同理AO=DO=AD=3,则AC=BD=3+5=8,根据中位线定理,FG=GH=HE=EF=8×
1
2
=4,四边形的周长是4×4=16,
故选C.
点评:此题考查学生对等腰梯形的性质及梯形的中位线定理的理解及运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网