题目内容
【题目】如图,直线AB//CD,直线EF交AB于点E,交CD于点F,EP平分∠AEF,FP平分∠CFE,∠BEP=α,∠DFP=β,则a+β=( )
A.180°B.225°C.270°D.315°
【答案】C
【解析】
根据平行线的性质,由AB∥CD得到∠AEF+∠CFE=180°,再根据角平分线定义得∠PEF+∠PFE=(∠AEF+∠CFE),然后计算出∠EPF=90°,再由∠BEP+∠EPF+∠PFD=360°,即可求出a+β的值.
解:∵AB∥CD,
∴∠AEF+∠CFE=180°,
又∵EP平分∠AEF,FP平分∠EFC
∴∠PEF+∠PFE=(∠AEF+∠CFE)=×180°=90°
∴∠EPF=90°
又∠BEF+∠EFD=180°,且△PEF内角和为360°
∴∠BEP+∠EPF+∠PFD=360°
∴∠BEP+∠PFD=α+β=360°-∠EPF=360°-90°=270°.
故选:C
练习册系列答案
相关题目