题目内容
【题目】设a,b是任意两个不等实数,我们规定满足不等式a≤x≤b的实数x的所有取值的全体叫做闭区间,表示为[a,b].对于一个函数,如果它的自变量x与函数值y满足:当m≤x≤n时,有m≤y≤n,我们就称此函数闭区间[m,n]上的“闭函数”.如函数y=﹣x+4.当x=1时,y=3;当x=3时,y=1,即当1≤x≤3时,有1≤y≤3,所以说函数y=﹣x+4是闭区间[1,3]上的“闭函数”
(1)反比例函数是闭区间[1,2019]上的“闭函数”吗?请判断并说明理由.
(2)若二次函数y=x2﹣2x﹣k是闭区间[1,2]上的“闭函数”,求k的值;
(3)若一次函数y=kx+b(k≠0)是闭区间[m,n]上的“闭函数”,求此函数的解析式(用含m,n的代数式表示).
【答案】(1)是;(2)k的值是﹣2;(3)y=﹣x+m+n.
【解析】
(1)根据反比例函数的单调区间进行判断;
(2)由于二次函数y=x2-2x-k的图象开口向上,对称轴为x=1,所以二次函数y=x2-2x-k在闭区间[1,2]内,y随x的增大而增大.当x=1时,y=1,所以k=-2.当x=2时,y=2,所以k=-2.即图象过点(1,1)和(2,2),所以当1≤x≤2时,有1≤y≤2,符合闭函数的定义,所以k=-2.
(3)根据新定义运算法则,分两种情况:k>0,k<0,列出关于系数k、b的方程组,通过解该方程组即可求得系数k、b的值,即可解答.
解:(1)反比例函数是闭区间[1,2019]上的“闭函数”,
理由:∵当x=1时,y=2019,当x=2019时,y=1,
∴反比例函数是闭区间[1,2019]上的“闭函数”;
(2)∵二次函数y=x2﹣2x﹣k=(x﹣1)2﹣1﹣k,
∴当x>1时,y随x的增大而增大,
∵二次函数y=x2﹣2x﹣k是闭区间[1,2]上的“闭函数”,
∴当x=1时,12﹣2×1﹣k=1,得k=﹣2,
即k的值是﹣2;
(3)∵一次函数y=kx+b(k≠0)是闭区间[m,n]上的“闭函数”,
∴当k>0时,,
得,
即此函数的解析式为y=x;
当k<0时,,
得,
即此函数的解析式为y=﹣x+m+n.
【题目】已知抛物线y=ax2+bx+c(a≠0)上部分点的横坐标x与纵坐标y的对应值如下表:
x | … | ﹣3 | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | … |
y | … |
| ﹣4 | ﹣4 | 0 | … |
(1)求该抛物线的表达式;
(2)已知点E(4, y)是该抛物线上的点,点E关于抛物线的对称轴对称的点为点F,求点E和点F的坐标.