题目内容
【题目】 正方形的边长为1,点是边上的一个动点(与不重合),以为顶点在所在直线的上方作.
(1)当经过点时,
①请直接填空: (可能,不可能)过点;(图1仅供分析)
②如图2,在上截取,过点作垂直于直线,垂足为点,册于,求证:四边形为正方形.
(2)当不过点时,设交边于,且.在上存在点,过点作垂直于直线,垂足为点,使得,连接,求四边形的最大面积.
【答案】(1)①不可能②证明见解析(2)
【解析】
试题分析:(1)①若ON过点D时,则在△OAD中不满足勾股定理,可知不可能过D点;
②由条件可先判业四边形EFCH为矩形,再证明△OFE≌△ABO,可证得结论;
(2)由条件可证明△PKO∽△OBG,利用相似三角形的性质可求得OP=2,可求得△POG面积为定值及△PKO和△OBG的关系,只要△CGB的面积有最大值时,则四边形PKBG的面积就最大,设OB=a,BG=b,由勾股定理可用b表示出a,则可用a表示出△CBG的面积,利用二次函数的性质可求得其最大值,则可求得四边形PKBG面积的最大值.
试题解析: (1)①若ON过点D,则OA>AB,OD>CD,
∴OA2>AD2,OD2>AD2,
∴OA2+OD2>2AD2≠AD2,
∴∠AOD≠90°,这与∠MON=90°矛盾,
∴ON不可能过D点,
故答案为:不可能;
②∵EH⊥CD,EF⊥BC,
∴∠EHC=∠EFC=90°,且∠HCF=90°,
∴四边形EFCH为矩形,
∵∠MON=90°,
∴∠EOF=90°﹣∠AOB,
在正方形ABCD中,∠BAO=90°﹣∠AOB,
∴∠EOF=∠BAO,
在△OFE和△ABO中
∴△OFE≌△ABO(AAS),
∴EF=OB,OF=AB,
又OF=CF+OC=AB=BC=BO+OC=EF+OC,
∴CF=EF,
∴四边形EFCH为正方形;
(2)∵∠POK=∠OGB,∠PKO=∠OBG,
∴△PKO∽△OBG,
∵S△PKO=4S△OBG,
∴=()2=4,
∴OP=2,
∴S△POG=OGOP=×1×2=1,
设OB=a,BG=b,则a2+b2=OG2=1,
∴b=,
∴S△OBG=ab=a==,
∴当a2=时,△OBG有最大值,此时S△PKO=4S△OBG=1,
∴四边形PKBG的最大面积为1+1+=.