题目内容

31、先阅读下列材料,然后完成下列填空:
点A、B在数轴上分别表示实数 a、b,A、B两点之间的距离表示为|AB|,当A、B两点中有一点在原点时,不妨设A点在原点,如图1|AB|=|OB|=|b|=|b-0|=|a-b|;
当A、B两点都不在原点时,
①如图2,A、B两点都在原点的右边,|AB|=|OB|-|OA|=|b|-|a|=b-a=|a-b|
②如图3,A、B两点都在原点的左边,|AB|=|OB|-|OA|=|b|-|a|=-b-(-a)=|a-b|
③如图4,A、B两点分别在原点的两边,|AB|=|OB|+|OA|=|b|+|a|=a+(-b)=|a-b|
综上所述,
(1)上述材料用到的数学思想方法是
数形结合、分类讨论
(至少写出2个)
(2)数轴上A、B两点之间的距离|AB|=|a-b|.回答下列问题:
数轴上表示2和5的两点之间的距离是
3
;数轴上表示-2和-5的两点之间的距离是
3
;数轴上表示1和-4的两点之间的距离是
5

(3)数轴上表示x和-1的两点A和B之间的距离是
|x+1|
;如果|AB|=2,那么x为
1或-3
分析:(1)从材料所提供的解题过程来总结所用的数学思想方法;
(2)直接根据数轴上A、B两点之间的距离|AB|=|a-b|.代入数值运用绝对值即可求任意两点间的距离.
(3)根据绝对值的性质,可得到一个一元一次不等式组,通过求解,就可得出x的取值范围.
解答:解:(1)根据“如图2、如图3、如图4”可知,该材料用到了“数形结合”是数学思想和“分类讨论”的数学思想;

(2)数轴上表示2和5的两点之间的距离是|2-5|=3,数轴上表示-2和-5的两点之间的距离是|-2-(-5)|=3.数轴上表示1和-3的两点之间的距离是|1-(-4)|=5.

(3)数轴上表示x和-1的两点A和B之间的距离是|x-(-1)|=|x+1|,如果|AB|=2,那么x为1或-3.
故答案是:(1)数形结合、分类讨论;(2)3、3、5;(3)|x+1|、1或-3.
点评:此题综合考查了数轴、绝对值的有关内容,用几何方法借助数轴来求解,非常直观,且不容易遗漏,体现了数形结合的优点.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网