题目内容
【题目】阅读下面材料:已知点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为|AB|,当A、B两点中有一点在原点时,不妨设点A在原点,如图1,|AB|=|OB|=|b|=|a﹣b|,当A、B两点都不在原点时.
(1)如图2,点A、B都在原点的右边,|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a﹣b|
(2)如图3,点A、B都在原点的左边,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣(﹣a)=a﹣b=|a﹣b|
(3)如图4,点A、B在原点的两边,|AB|=|OA|+|OB|=|a|+|b|=a+(﹣b)=a﹣b=|a﹣b|
综上,数轴上A、B两点的距离|AB|=|a﹣b|
回答下列问题:
(1)数轴上表示2和5的两点之间的距离是 ,数轴上表示﹣2和﹣5的两点之间的距离是 ,数轴上表示﹣2和5的两点之间的距离是 ;
(2)数轴上表示x和﹣1的两点A和B之间的距离是 ,如果|AB|=2那么x为 .
(3)若x表示一个有理数,则|x﹣1|+|x+3|有最小值吗?若有,请求出最小值;若没有,请说明理由.
【答案】(1)3;3;7;(2)|x+1|,1或﹣3;(3)4.
【解析】试题分析:(1)数轴上表示2和5的两点之间的距离是|5-2|=3,-2和-5的两点之间的距离是|-2-(-5)|=3,表示-2和5的两点之间的距离是|5-(-2)|=7;(2)数轴上表示x和-1的两点A和B之间的距离是|x-(-1)|=|x+1|,令|x+1|=2,解得x=1或-3;(3)代数式|x-1|+|x+3|表示数轴上一点到1、-3两点的距离的和,根据两点之间线段最短可知,有最小值为:1-(-3)=4.
试题解析:
(1)数轴上表示2和5的两点之间的距离是:|5-2|=3,
数轴上表示-2和-5的两点之间的距离是|-2-(-5)|=3,
数轴上表示-2和5的两点之间的距离是|5-(-2)|=7;
(2)数轴上表示x和-1的两点之间的距离是|x+1|,|AB|=2,则|x+1|=2,故x=1或-3;
(3)代数式|x-1|+|x+3|表示数轴上一点到1、-3两点的距离的和,根据两点之间线段最短可知,有最小值为:1-(-3)=4.