题目内容
【题目】如图在Rt△ABC中,∠BAC=90 o,AC=2AB,点D是AC的中点,将一块锐角为45 o的直角三角板如图放置,使三角板斜边的两个端点分别与A,D重合,连接BE,EC。试猜想线段BE和EC的数量及位置关系,并证明你的猜想。
【答案】BE=EC且BE⊥EC,证明见解析.
【解析】试题分析:数量关系为:BE=EC,位置关系是:BE⊥EC;利用直角三角形斜边上的中线等于斜边的一半,以及等腰直角三角形的性质,即可证得:△EAB≌△EDC即可证明.
试题解析:BE=EC BE⊥EC
证明∵AC=2AB,点D是AC的中点
∴AB=AD=CD
∵∠EAD=∠EDA=45°
∴∠EAB=∠EDC=135°
∵EA=ED
∴△EAB≌△EDC
∴∠AEB=∠DEC,EB=EC
∴∠BEC=∠AED=90°
∴BE=EC,BE⊥EC
练习册系列答案
相关题目