题目内容
【题目】小明和小亮玩一个游戏:三张大小、质地都相同的卡片上分别标有数字1,2,3,现将标有数字的一面朝下扣在桌子上.小明从中任意抽取一张,记下数字后放回洗匀,然后小亮从中任意抽取一张.
(1)用列表或画树状图等方法,列出小明和小亮抽得的卡片上所标数字的所有可能情况;
(2)计算小明和小亮抽得的两张卡片上的数字之和,如果和为奇数则小明胜,和为偶数则小亮胜,请判断游戏是否公平?并说明理由.
【答案】(1)(1,1)、(1,2)、(1,3)、(2,1)、(2,2)、(2,3)、(3,1)、(3,2)、(3,3);(2)游戏不公平,理由见解析
【解析】
(1)根据题意可以写出所有的可能性;
(2)根据题意可以分别求得他们获胜的概率.
解:(1)由题意可得,
出现的可能性是:(1,1)、(1,2)、(1,3)、(2,1)、(2,2)、(2,3)、(3,1)、(3,2)、(3,3);
(2)游戏不公平,
理由:出现和为奇数的可能性是:(1,2)、(2,1)、(2,3)、(3,2),
∴小明获胜的概率是 ,则小亮获胜的概率是,
故该游戏不公平.
故答案为:(1)(1,1)、(1,2)、(1,3)、(2,1)、(2,2)、(2,3)、(3,1)、(3,2)、(3,3);(2)游戏不公平,理由见解析.
练习册系列答案
相关题目