题目内容

【题目】如图,AB为⊙O的切线,切点为B,连接AO,AO与⊙O交于点C,BD为⊙O的直径,连接CD,若∠A=30°,⊙O的半径为2,则图中阴影部分的面积为(结果保留π)

【答案】 π﹣
【解析】解: 如图,过O作OE⊥CD于点E,
∵AB为⊙O的切线,
∴∠DBA=90°,
∵∠A=30°,
∴∠BOC=60°,
∴∠COD=120°,
∵OC=OD=2,
∴∠ODE=30°,
∴OE=1,CD=2DE=2
∴S阴影=S扇形COD﹣SCOD= ×1×2 = π﹣
所以答案是: π﹣

【考点精析】解答此题的关键在于理解切线的性质定理的相关知识,掌握切线的性质:1、经过切点垂直于这条半径的直线是圆的切线2、经过切点垂直于切线的直线必经过圆心3、圆的切线垂直于经过切点的半径,以及对扇形面积计算公式的理解,了解在圆上,由两条半径和一段弧围成的图形叫做扇形;扇形面积S=π(R2-r2).

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网