题目内容

(本题满分14分,第(1)小题满分4分,第(2)、(3)小题满分各5分)在Rt△ABC中,∠ACB=90°,BC=30,AB=50.点PAB边上任意一点,直线PEAB,与边ACBC相交于E.点M在线段AP上,点N在线段BP上,EMEN

(1)如图1,当点E与点C重合时,求CM的长;

(2)如图2,当点E在边AC上时,点E不与点AC重合,设APxBNy,求y关于x的函数关系式,并写出函数的定义域;

(3)若△AME∽△ENB(△AME的顶点AME分别与△ENB的顶点ENB对应),求AP的长.

 

【答案】

(本题满分14分,第(1)小题满分4分,第(2)、(3)小题满分各5分)

[解] (1) 由AE=40,BC=30,AB=50,ÞCP=24,又sinÐEMP=ÞCM=26。

(2) 在Rt△AEP與Rt△ABC中,∵ ÐEAPBAC,∴ Rt△AEP ~ Rt△ABC

,即,∴ EP=x

又sinÐEMP=ÞtgÐEMP==Þ=,∴ MP=x=PN

BN=AB-AP-PN=50-x-x=50-x (0<x<32)。

(3) j 當E在線段AC上時,由(2)知,,即,ÞEM=x=EN

AM=AP-MP=x-x=x

由題設△AME ~ △ENB,∴ ,Þ=,解得x=22=AP

k 當E在線段BC上時,由題設△AME ~ △ENB,∴ ÐAEMEBN

由外角定理,ÐAECEABEBNEABAEMEMP

RtACE ~ RtEPM,Þ,即,ÞCE=…j。

AP=z,∴PB=50-z

RtBEP ~ RtBAC,Þ,即=,ÞBE=(50-z),∴CE=BC-BE=30-(50-z)…k。

由j,k,解=30-(50-z),得z=42=AP

【解析】略

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网