ÌâÄ¿ÄÚÈÝ
ÇëÄãÀûÓÃÖ±½Ç×ø±êƽÃæÉÏÈÎÒâÁ½µã£¨x1£¬y1£©¡¢£¨x2£¬y2£©¼äµÄ¾àÀ빫ʽd=(x1-x2)2+(y1-y2)2 |
ÒÑÖª£º·´±ÈÀýº¯Êýy=
2 |
x |
2 |
x |
·ÖÎö£º½âÓÉy=
ºÍy=x×é³ÉµÄ·½³Ì×é¿ÉµÃA¡¢BÁ½µãµÄ×ø±ê·Ö±ðΪ£¨
£¬
£©¡¢£¨-
£¬-
£©£¬ÀûÓÃÁ½µã¼äµÄ¾àÀ빫ʽ¿ÉÇó³öÏ߶ÎABµÄ³¤¶È£¬ÓÉPΪ·´±ÈÀýº¯Êýy=
ÉÏÒ»µã¿ÉµÃ³öx0Óëy0µÄ¹Øϵʽ£¬ÀûÓÃÁ½µã¼äµÄ¾àÀ빫ʽ¿ÉµÃ³öPF1¡¢PF2µÄ³¤£¬´úÈëd=|PF1-PF2|¼´¿ÉµÃµ½x0µÄ±í´ïʽ£¬ÔÙ¸ù¾Ýx0µÄÈ¡Öµ·¶Î§¼´¿ÉÇó³ödµÄ³¤£¬½ø¶øµÃ³ö½áÂÛ£®
2 |
x |
2 |
2 |
2 |
2 |
2 |
x |
½â´ð£º½â£º½âÓÉy=
ºÍy=x×é³ÉµÄ·½³Ì×é¿ÉµÃA¡¢BÁ½µãµÄ×ø±ê·Ö±ðΪ£¬£¨
£¬
£©¡¢£¨-
£¬-
£©£¬Ï߶ÎABµÄ³¤¶È=4£¨2·Ö£©
¡ßµãP£¨x0£¬y0£©ÊÇ·´±ÈÀýº¯Êýy=
ͼÏóÉÏÒ»µã£¬
¡ày0=
¡àPF1=
=
=|
|£¬
PF2=
=
=|
|£¬£¨3·Ö£©
¡àd=|PF1-PF2|=||
|-|
||£¬
µ±x0£¾0ʱ£¬d=4£»µ±x0£¼0ʱ£¬d=4£®£¨3·Ö£©
Òò´Ë£¬ÎÞÂÛµãPµÄλÖÃÈçºÎ£¬Ï߶ÎABµÄ³¤¶ÈÓëdÒ»¶¨ÏàµÈ£®£¨2·Ö£©
ÓÉ´Ë¿ÉÖª£ºµ½Á½¸ö¶¨µãµÄ¾àÀëÖ®²î£¨È¡ÕýÖµ£©ÊǶ¨ÖµµÄµãµÄ¼¯ºÏ£¨¹ì¼££©ÊÇË«ÇúÏߣ®£¨2·Ö£©
2 |
x |
2 |
2 |
2 |
2 |
¡ßµãP£¨x0£¬y0£©ÊÇ·´±ÈÀýº¯Êýy=
2 |
x |
¡ày0=
2 |
x0 |
¡àPF1=
(x0+2)2+(
|
(x0+
|
(x0+1)2+1 |
x0 |
PF2=
(x0-2)2+(
|
(x0+
|
(x0-1)2+1 |
x0 |
¡àd=|PF1-PF2|=||
(x0+1)2+1 |
x0 |
(x0-1)2+1 |
x0 |
µ±x0£¾0ʱ£¬d=4£»µ±x0£¼0ʱ£¬d=4£®£¨3·Ö£©
Òò´Ë£¬ÎÞÂÛµãPµÄλÖÃÈçºÎ£¬Ï߶ÎABµÄ³¤¶ÈÓëdÒ»¶¨ÏàµÈ£®£¨2·Ö£©
ÓÉ´Ë¿ÉÖª£ºµ½Á½¸ö¶¨µãµÄ¾àÀëÖ®²î£¨È¡ÕýÖµ£©ÊǶ¨ÖµµÄµãµÄ¼¯ºÏ£¨¹ì¼££©ÊÇË«ÇúÏߣ®£¨2·Ö£©
µãÆÀ£º±¾Ì⿼²éµÄÊÇ·´±ÈÀýº¯ÊýÓëÒ»´Îº¯ÊýµÄ½»µãÎÊÌ⣬ÊìÁ·ÀûÓÃÁ½µã¼äµÄ¾àÀ빫ʽÊǽâ´ð´ËÌâµÄ¹Ø¼ü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿