题目内容

已知:如图,扇形OAB和扇形OA′B′的圆心角相同,设AA′=BB′=d.
AB
=l1
A′B′
=l2
求证:图中阴影部分的面积S=
1
2
(l1+l2)d
分析:设∠AOB=n°,OA′=OB′=r,根据弧长公式用l1,l2表示出r,再根据S阴影=S扇形OAB-S扇形OA′B′进行计算即可得出结论.
解答:证明:设∠AOB=n°,OA′=OB′=r,
AB
=l1
A′B′
=l2
∴l1=
nπ(r+d)
180
,l2=
nπr
180

l1
l2
=
r+d
r

∴r=
l2d
l1-l2
①,
∵S阴影=S扇形OAB-S扇形OA′B′=
1
2
l1(r+d)-
1
2
l2r=
1
2
(l1r+l1d-l2r)
=
1
2
[(l1-l2)r+l1d]
=
1
2
[(l1-l2)×
l2d
l1-l2
+l1d]
=
1
2
(l2d+l1d)
=
1
2
(l1+l2)d.
点评:本题考查的是扇形面积的计算及弧长公式,根据弧长公式用l1,l2表示出r的值是解答此题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网