题目内容

【题目】已知矩形ABCD的一条边AD8,将矩形ABCD折叠,使得顶点B落在CD边上的P点处.如图,已知折痕与边BC交于点O,连接APOPOA

1)求证:

2)若△OCP与△PDA的面积比为14,求边AB的长.

【答案】(1)详见解析;(2)10.

【解析】

①只需证明两对对应角分别相等可得两个三角形相似;故.
根据相似三角形的性质求出PC长以及APOP的关系,然后在RtPCO中运用勾股定理求出OP长,从而求出AB长.

∵四边形ABCD是矩形,

AD=BC,DC=AB,DAB=B=C=D=90°.

由折叠可得:AP=AB,PO=BO,PAO=BAO,APO=B.

∴∠APO=90°.

∴∠APD=90°CPO=POC.

∵∠D=C,APD=POC.

OCPPDA.

.

OCPPDA的面积比为1:4,

OCPD=OPPA=CPDA=14√=12.

PD=2OC,PA=2OP,DA=2CP.

AD=8,

CP=4,BC=8.

OP=x,则OB=x,CO=8x.

PCO中,

∵∠C=90,CP=4,OP=x,CO=8x,

x2=(8x)2+42.

解得:x=5.

AB=AP=2OP=10.

∴边AB的长为10.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网