题目内容
已知代数式A=2x2+3xy+2y-1,B=x2-xy+x-1 | 2 |
(1)当x=y=-2时,求A-2B的值;
(2)若A-2B的值与x的取值无关,求y的值.
分析:(1)将A、B表示的代数式代入A-2B中,去括号,合并同类项即可;
(2)由(1)可知A-2B=5xy+2y-2x,将含x的项合并得(5y-2)x+2y,令含xd的项系数为0即可.
(2)由(1)可知A-2B=5xy+2y-2x,将含x的项合并得(5y-2)x+2y,令含xd的项系数为0即可.
解答:解:(1)A-2B=2x2+3xy+2y-1-2(x2-xy+x-
)
=2x2+3xy+2y-1-2x2+2xy-2x+1
=5xy+2y-2x,
当x=y=-2时,
A-2B=5xy+2y-2x
=5×(-2)×(-2)+2×(-2)-2×(-2)
=20;
(2)由(1)可知A-2B=5xy+2y-2x=(5y-2)x+2y,
若A-2B的值与x的取值无关,则5y-2=0,
解得y=
.
1 |
2 |
=2x2+3xy+2y-1-2x2+2xy-2x+1
=5xy+2y-2x,
当x=y=-2时,
A-2B=5xy+2y-2x
=5×(-2)×(-2)+2×(-2)-2×(-2)
=20;
(2)由(1)可知A-2B=5xy+2y-2x=(5y-2)x+2y,
若A-2B的值与x的取值无关,则5y-2=0,
解得y=
2 |
5 |
点评:本题考查了整式的化简.整式的加减运算实际上就是去括号、合并同类项,这是各地中考的常考点.
练习册系列答案
相关题目