题目内容
(本题满分12分) 如图所示, 在平面直角坐标系xoy中, 矩形OABC的边长OA、OC分别为12cm、6cm, 点A、C分别在y轴的负半轴和x轴的正半轴上, 抛物线y=ax2+bx+c经过点A、B, 且18a + c = 0.
1.(1)求抛物线的解析式.
2.(2)如果点P由点A开始沿AB边以1cm/s的速度向终点B移动, 同时点Q由点B开始沿BC边以2cm/s的速度向终点C移动.
①移动开始后第t秒时, 设△PBQ的面积为S, 试写出S与t之间的函数关系式, 并写出t的取值范围.
②当S取得最大值时, 在抛物线上是否存在点R, 使得以P、B、Q、R为顶点的四边形是平行四边形? 如果存在, 求出R点的坐标, 如果不存在, 请说明理由.
1.(1)由题意知点A(0,-12),所以,…………………………………1分
又18a+c=0,∴, ………………………………2分
∵AB∥CD,且AB=6,
∴抛物线的对称轴是.
∴. ………………………………4分
所以抛物线的解析式为
2.(2)①,.…………………6分
②当时,S取最大值为9。这时点P的坐标(3,-12),点Q坐标(6,-6).…8分
若以P、B、Q、R为顶点的四边形是平行四边形,有如下三种情况:
(Ⅰ)当点R在BQ的左边,且在PB下方时,点R的坐标(3,-18),
将(3,-18)代入抛物线的解析式中,满足解析式,所以存在,点R的坐标就是(3,-18); ……………………9分
(Ⅱ)当点R在BQ的左边,且在PB上方时,点R的坐标(3,-6),将(3,-6)代入抛物线的解析式中,不满足解析式,所以点R不满足条件. …………………10分
(Ⅲ)当点R在BQ的右边,且在PB上方时,点R的坐标(9,-6),将(9,-6)代入抛物线的解析式中,不满足解析式,所以点R不满足条件. …………………11分
综上所述,点R坐标为(3,-18).
解析:略