题目内容
【题目】如图(1)是一个横断面为抛物线形状的拱桥,当水面宽为时,拱顶与水面距离为.
(1)请你在图(2)中,建立适当的平面直角坐标系,使该抛物线拱桥的函数关系式符合形式,并求此时,函数关系式;
(2)当水面上升时,求水面宽度.
【答案】(1);(2).
【解析】
(1)以抛物线的顶点为坐标原点,线段的中垂线为轴建立坐标系,再利用待定系数法求得函数解析式;
(2)求出(1)中所求函数解析式时的值,据此可得.
(1)建立平面直角坐标系,则通过画图可得知为原点,
抛物线以轴为对称轴,且经过、两点,抛物线顶点坐标为,
通过以上条件可设顶点式,其中可通过代入点坐标,
到抛物线解析式得出:,
所以抛物线解析式为;
(2)水面上升m,
,
故,
解得:,,
则水面的宽为().
答:水面宽度为.
练习册系列答案
相关题目