题目内容
如图,已知AB∥CD,∠E=28°,∠C=52°,则∠EAB的度数是
- A.28°
- B.52°
- C.70°
- D.80°
D
分析:由AB∥CD,根据两直线平行,同位角相等,即可求得∠1的度数,又由三角形外角的性质,即可求得∠EAB的度数.
解答:解:如图,延长BA交CE于点F.
∵AB∥CD,
∴∠1=∠C=52°,
∵∠E=28°,
∴∠EAB=∠1+∠E=52°+28°=80°.
故选D.
点评:此题考查了平行线的性质.注意两直线平行,同位角相等,注意数形结合思想的应用.
分析:由AB∥CD,根据两直线平行,同位角相等,即可求得∠1的度数,又由三角形外角的性质,即可求得∠EAB的度数.
解答:解:如图,延长BA交CE于点F.
∵AB∥CD,
∴∠1=∠C=52°,
∵∠E=28°,
∴∠EAB=∠1+∠E=52°+28°=80°.
故选D.
点评:此题考查了平行线的性质.注意两直线平行,同位角相等,注意数形结合思想的应用.
练习册系列答案
相关题目