题目内容

【题目】如图,已知等腰直角△ABC,点P是斜边BC上一点(不与B,C重合),PE是△ABP的外接圆⊙O的直径

(1)求证:△APE是等腰直角三角形;
(2)若⊙O的直径为2,求 的值

【答案】
(1)

证明:∵△ABC是等腰直角三角形,

∴∠C=∠ABC=45°,

∴∠PEA=∠ABC=45°

又∵PE是⊙O的直径,

∴∠PAE=90°,

∴∠PEA=∠APE=45°,

∴ △APE是等腰直角三角形.


(2)

解:∵△ABC是等腰直角三角形,

∴AC=AB,

同理AP=AE,

又∵∠CAB=∠PAE=90°,

∴∠CAP=∠BAE,

∴△CPA≌△BAE,

∴CP=BE,

在Rt△BPE中,∠PBE=90°,PE=2,

∴PB2+BE2=PE2,

∴CP2+PB2=PE2=4.


【解析】(1)根据等腰直角三角形性质得出∠C=∠ABC=∠PEA=45°,再由PE是⊙O的直径,得出∠PAE=90°,∠PEA=∠APE=45°,从而得证.
(2)根据题意可知,AC=AB,AP=AE,再证△CPA≌△BAE,得出CP=BE,依勾股定理即可得证.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网