题目内容
【题目】如图,在每格为1个单位的正方形网格中建立直角坐标系,反比例函数y=的图象经过格点A.
(1)请写出点A的坐标、反比例函数y=的解析式;
(2)若点B(m,y1)、C(n,y2)(2<m<n)都在函数y=的图象上,试比较y1与y2的大小.
【答案】解:(1)由表得知A(﹣5,1),
∵反比例函数y=的图象经过格点A.
∴k=﹣5,
∴反比例函数y=的解析式为:y=﹣;
(2)∵k=﹣5<0,
∴在每个象限内,y随x的增大而增大,
∵2<m<n,
∴y1<y2 .
【解析】(1)由图可得点A的坐标为:(﹣5,1),又由反比例函数y=经过A点,利用待定系数法即可求得反比例函数解析式;
(2)由反比例函数的性质:k<0时,在每个象限内,y随x的增大而增大,因为2<m<n,所以B,C都在第四象限,所以y1<y2 .
【考点精析】本题主要考查了反比例函数的性质的相关知识点,需要掌握性质:当k>0时双曲线的两支分别位于第一、第三象限,在每个象限内y值随x值的增大而减小; 当k<0时双曲线的两支分别位于第二、第四象限,在每个象限内y值随x值的增大而增大才能正确解答此题.
练习册系列答案
相关题目
【题目】某商店需要购进一批电视机和洗衣机,根据市场调查,决定电视机进货量不少于洗衣机进货量的一半.电视机与洗衣机的进价和售价如下表:
类 别 | 电视机 | 洗衣机 |
进价(元/台) | 1 800 | 1 500 |
售价(元/台) | 2 000 | 1 600 |
计划购进电视机和洗衣机共 100 台,商店最多可筹集资金161 800 元.
(1)请你帮助商店算一算有多少种进货方案(不考虑除进价之外的其他费用);
(2)哪种进货方案待商店销售购进的电视机与洗衣机完毕后获得的利润最多?并求出最大的利润(利润=售价-进价).