题目内容
在盒子里放有三张分别写有整式a+1、a+2、2的卡片,从中随机抽取两张卡片,把两张卡片上的整式分别作为分子和分母,则能组成分式的概率是分析:首先根据题意画树状图,然后根据树状图即可求得所有等可能的结果与能组成分式的情况数,然后根据概率公式求解即可求得答案.
解答:解:画树状图得:
∴一共有6种等可能的结果,把两张卡片上的整式分别作为分子和分母,能组成分式的有4个,
∴能组成分式的概率是
=
.
故答案为:
.
∴一共有6种等可能的结果,把两张卡片上的整式分别作为分子和分母,能组成分式的有4个,
∴能组成分式的概率是
4 |
6 |
2 |
3 |
故答案为:
2 |
3 |
点评:此题考查了列表法或树状图法求概率.注意树状图法与列表法可以不重不漏的表示出所有等可能的结果.用到的知识点为:概率=所求情况数与总情况数之比.
练习册系列答案
相关题目
在盒子里放有三张分别写有整式2,x+3,5的卡片,从中随机抽取两张卡片,把两张卡片上的整式分别作为分子和分母,则能组成分式的概率是( )
A、
| ||
B、
| ||
C、
| ||
D、
|