题目内容
已知△ABC的外接圆O的半径为3,AC=4,则sinB=
- A.
- B.
- C.
- D.
D
分析:作辅助线(连接AO并延长交圆于E,连CE) 构造直角三角形ACE,在直角三角形中根据锐角三角函数的定义求得角E的正弦值;然后由同弧所对的圆周角相等知∠B=∠E;最后由等量代换求得∠B的正弦值,并作出选择.
解答:解:连接AO并延长交圆于E,连CE.
∴∠ACE=90°(直径所对的圆周角是直角);
在直角三角形ACE中,AC=4,AE=6,
∴sin∠E==;
又∵∠B=∠E(同弧所对的圆周角相等),
∴sinB=.
故选D.
点评:本题主要考查了圆周角定理、锐角三角函数的定义.在求锐角三角函数值时,一般是通过作辅助线构造直角三角形,在直角三角形中解三角函数的三角函数值即可.
分析:作辅助线(连接AO并延长交圆于E,连CE) 构造直角三角形ACE,在直角三角形中根据锐角三角函数的定义求得角E的正弦值;然后由同弧所对的圆周角相等知∠B=∠E;最后由等量代换求得∠B的正弦值,并作出选择.
解答:解:连接AO并延长交圆于E,连CE.
∴∠ACE=90°(直径所对的圆周角是直角);
在直角三角形ACE中,AC=4,AE=6,
∴sin∠E==;
又∵∠B=∠E(同弧所对的圆周角相等),
∴sinB=.
故选D.
点评:本题主要考查了圆周角定理、锐角三角函数的定义.在求锐角三角函数值时,一般是通过作辅助线构造直角三角形,在直角三角形中解三角函数的三角函数值即可.
练习册系列答案
相关题目
如图,已知△ABC的外接圆⊙O的半径为1,D,E分别为AB,AC的中点,则sin∠BAC的值等于线段( )
A、BC的长 | B、DE的长 | C、AD的长 | D、AE的长 |
如图,已知△ABC的外接圆⊙O的半径为1,D、E分别是AB、AC上的点,BD=2AD,EC=2AE,则sin∠BAC的值等于线段( )
A、DE的长 | ||
B、BC的长 | ||
C、
| ||
D、
|
已知△ABC的外接圆O的半径为3,AC=4,则sinB=( )
A、
| ||
B、
| ||
C、
| ||
D、
|