题目内容

24、商场某种新商品每件进价是40元,在试销期间发现,当每件商品售价50元时,每天可销售500件,当每件商品售价高于50元时,每涨价1元,日销售量就减少10件.据此规律,请回答:
(1)当每件商品售价定为55元时,每天可销售多少件商品?商场获得的日盈利是多少?
(2)在上述条件不变,商品销售正常的情况下,每件商品的销售定价为多少元时,商场日盈利可达到8000元?
分析:(1)首先求出每天可销售商品数量,然后可求出日盈利;
(2)设商场日盈利达到8000元时,每件商品售价为x元,根据每件商品的盈利×销售的件数=商场的日盈利,列方程求解即可.
解答:解:(1)当每件商品售价为55元时,比每件商品售价50元高出5元,
即55-50=5(元),(1分)
则每天可销售商品450件,即500-5×10=450(件),(2分)
商场可获日盈利为(55-40)×450=6750(元).(3分)
答:每天可销售450件商品,商场获得的日盈利是6750元;
(2)设商场日盈利达到8000元时,每件商品售价为x元.
则每件商品比50元高出(x-50)元,每件可盈利(x-40)元,(4分)
每日销售商品为500-10×(x-50)=1000-10x(件).(5分)
依题意得方程(1000-10x)(x-40)=8000,(6分)
整理,得x2-140x+4800=0,(7分)
解得x=60或80.(9分)
答:每件商品售价为60或80元时,商场日盈利达到8000元.(10分)
点评:本题考查了一元二次方程的实际应用,根据每件商品的盈利×销售的件数=商场的日盈利,列出方程是关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网