题目内容
【题目】如图①,E是直线AB,CD内部一点,AB∥CD,连接EA,ED.
(1)探究猜想:
①若∠A=20°,∠D=40°,则∠AED= °
②猜想图①中∠AED,∠EAB,∠EDC的关系,并用两种不同的方法证明你的结论.
(2)拓展应用:
如图②,射线FE与l1,l2交于分别交于点E、F,AB∥CD,a,b,c,d分别是被射线FE隔开的4个区域(不含边界,其中区域a,b位于直线AB上方,P是位于以上四个区域上的点,猜想:∠PEB,∠PFC,∠EPF的关系(任写出两种,可直接写答案).
【答案】(1)① 60;②∠AED=∠A+∠D;(2)当P在a区域时,∠PEB=∠PFC+∠EPF;当P点在b区域时,∠PFC=∠PEB+∠EPF;当P点在区域c时,∠EPF+∠PEB+∠PFC=360°;当P点在区域d时,∠EPF=∠PEB+∠PFC.
【解析】试题分析:(1)①根据平行线的性质求出角的度数即可;②本题的方法一,利用平行线的性质和外角的性质即可得出结论;方法二利用平行线的性质得出即可;(2)本题分四种情况讨论,画出图形,利用平行线的性质和三角形外角性质得出结论即可.
试题解析:
(1)① ∠AED=60°
②∠AED=∠A+∠D,
证明:方法一、延长DE交AB于F,如图1,
∵AB∥CD,
∴∠DFA=∠D,
∴∠AED=∠A+∠DFA;
方法二、过E作EF∥AB,如图2,
∵AB∥CD,
∴AB∥EF∥CD,
∴∠A=∠AEF,∠D=∠DEF,
∴∠AED=∠AEF+∠DEF=∠A+∠D;
(2)任意写一个。
当P在a区域时,如图3,∠PEB=∠PFC+∠EPF;
当P点在b区域时,如图4,∠PFC=∠PEB+∠EPF;
当P点在区域c时,如图5,∠EPF+∠PEB+∠PFC=360°;
当P点在区域d时,如图6,∠EPF=∠PEB+∠PFC.