题目内容

【题目】如图,在平面直角坐标系中,已知点A(0,1)、点B(0,1+t)、C(0,1﹣t)(t>0),点P在以D(3,3)为圆心,1为半径的圆上运动,且始终满足∠BPC=90°,则t的最小值是

【答案】 ﹣1
【解析】解:如图,连接AP, ∵点A(0,1)、点B(0,1+t)、C(0,1﹣t)(t>0),
∴AB=(1+t)﹣1=t,AC=1﹣(1﹣t)=t,
∴AB=AC,
∵∠BPC=90°,
∴AP= BC=AB=t,
要t最小,就是点A到⊙D上的一点的距离最小,
∴点P在AD上,
∵A(0,1),D(3,3),
∴AD= =
∴t的最小值是AP=AD﹣PD= ﹣1,
故答案为 ﹣1.

先求出AB,AC进而得出AC=AB,结合直角三角形的斜边的中线等于斜边的一半,即AP=t,即可得出t最小时,点P在AD上,用两点间的距离公式即可得出结论.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网