题目内容
(2007•乌鲁木齐)已知开口向上的抛物线y=ax2-2x+|a|-4经过点(0,-3).
(1)此抛物线的解析式为
(2)当x=
(1)此抛物线的解析式为
y=x2-2x-3
y=x2-2x-3
;(2)当x=
1
1
时,y有最小值,这个最小值是-4
-4
.分析:(1)因为开口向上,所以a>0;把点(0,-3)代入抛物线y=ax2-2x+|a|-4中,得|a|-4=-3,
再根据a>0求a,从而确定抛物线解析式;
(2)根据二次函数的顶点坐标,求解即可.
再根据a>0求a,从而确定抛物线解析式;
(2)根据二次函数的顶点坐标,求解即可.
解答:解:(1)由抛物线过(0,-3),得:
-3=|a|-4,
|a|=1,即a=±1.
∵抛物线开口向上,
∴a=1,
故抛物线的解析式为y=x2-2x-3;
(2)∵y=x2-2x-3=(x-1)2-4,
∴当x=1时,y有最小值-4.
-3=|a|-4,
|a|=1,即a=±1.
∵抛物线开口向上,
∴a=1,
故抛物线的解析式为y=x2-2x-3;
(2)∵y=x2-2x-3=(x-1)2-4,
∴当x=1时,y有最小值-4.
点评:此题考查了二次函数的开口方向,顶点坐标,还考查了点与函数的关系.
练习册系列答案
相关题目