题目内容
计算:6tan230°-cos 30°·tan 60°-2sin 45°+cos 60°.
如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=2.点P是△ABC内部的一个动点,且满足∠PAC=∠PCB,则线段BP长的最小值是_____.
在平面直角坐标系xOy中,直线AB交y轴于A点,交X轴于B点,A(0,6),B(6,0).点D是线段BO上一点,BN⊥AD交AD的延长线于点N.
(1)如图,若OM∥BN交AD于点M.点O作0G⊥BN,交BN的延长线于点G,求证:AM=BG
(2)如图,若∠ADO=67.5°,OM∥BN交AD于点M,交AB于点Q,求的值.
(3)如图,若OC∥AB交BN的延长线于点C.请证明:∠CDN+2∠BDN=180°.
下列条件中,能判定△ABC≌△DEF的是( )
A. ∠A=∠D,∠B=∠E,∠C=∠F B. AC=DF,∠B=∠E,BC=EF
C. AB=DE,∠B=∠E,AC=DF D. AB=DE,∠B=∠E,BC=EF
旅游公司在景区内配置了50辆观光车共游客租赁使用,假定每辆观光车一天内最多只能出租一次,且每辆车的日租金x(元)是5的倍数.发现每天的营运规律如下:当x不超过100元时,观光车能全部租出;当x超过100元时,每辆车的日租金每增加5元,租出去的观光车就会减少1辆.已知所有观光车每天的管理费是1100元.
(1)优惠活动期间,为使观光车全部租出且每天的净收入为正,则每辆车的日租金至少应为多少元?(注:净收入=租车收入﹣管理费)
(2)当每辆车的日租金为多少元时,每天的净收入最多?
如图,是二次函数y=ax2+bx+c图象的一部分,其对称轴为直线x=1,若其与x轴一交点为A(3,0),则由图象可知,不等式ax2+bx+c<0的解集是_____.
如图,两建筑物的水平距离为32 m,从点A测得点C的俯角为30°,点D的俯角为45°,则建筑物CD的高约为( )
A. 14 m B. 17 m C. 20 m D. 22 m
如图,某公园入口处原有三级台阶,每级台阶高为18cm,深为30cm,为方便残疾人士,拟将台阶改为斜坡,设台阶的起点为A,斜坡的起始点为C,现设计斜坡BC的坡度,则AC的长度是 cm.
如图,下列角的表示方法中不正确的是 ( )
A. ∠B B. ∠ACE C. ∠α D. ∠A