题目内容
【题目】已知抛物线y=(x-m)2-(x-m),其中m是常数.
(1)求证:不论m为何值,该抛物线与x轴一定有两个公共点;
(2)若该抛物线的对称轴为直线x=.
①求该抛物线的函数解析式;
②把该抛物线沿y轴向上平移多少个单位长度后,得到的抛物线与x轴只有一个公共点.
【答案】(1)证明见解析(2)①y=x2-5x+6②该抛物线沿y轴向上平移个单位长度后,得到的抛物线与x轴只有一个公共点
【解析】试题分析:(1)先把抛物线解析式化为一般式,再计算△的值,得到△=1>0,于是根据△=b2-4ac决定抛物线与x轴的交点个数即可判断不论m为何值,该抛物线与x轴一定有两个公共点;
(2)①根据对称轴方程得到=-,然后解出m的值即可得到抛物线解析式;
②根据抛物线的平移规律,设抛物线沿y轴向上平移k个单位长度后,得到的抛物线与x轴只有一个公共点,则平移后抛物线解析式为y=x2-5x+6+k,再利用抛物线与x轴的只有一个交点得到△=52-4(6+k)=0,然后解关于k的方程即可.
试题解析:(1)y=(x-m)2-(x-m)=x2-(2m+1)x+m2+m,
∵△=(2m+1)2-4(m2+m)=1>0,
∴不论m为何值,该抛物线与x轴一定有两个公共点;
(2)①∵x=-,
∴m=2,
∴抛物线解析式为y=x2-5x+6;
②设抛物线沿y轴向上平移k个单位长度后,得到的抛物线与x轴只有一个公共点,则平移后抛物线解析式为y=x2-5x+6+k,
∵抛物线y=x2-5x+6+k与x轴只有一个公共点,
∴△=52-4(6+k)=0,
∴k=,
即把该抛物线沿y轴向上平移个单位长度后,得到的抛物线与x轴只有一个公共点.
练习册系列答案
相关题目