题目内容
一个样本为1、3、2、2、a,b,c.已知这个样本的众数为3,平均数为2,那么这个样本的方差为( )
分析:因为众数为3,表示3的个数最多,因为2出现的次数为二,所以3的个数最少为三个,则可设a,b,c中有两个数值为3.另一个未知利用平均数定义求得,从而根据方差公式求方差.
解答:解:因为众数为3,可设a=3,b=3,c未知
平均数=(1+3+2+2+3+3+c)=2,解得c=0
根据方差公式S2= [(1-2)2+(3-2)2+(2-2)2+(2-2)2+(3-2)2+(3-2)2+(0-2)2]=
故填.
解答:解:因为众数为3,可设a=3,b=3,c未知
平均数=(1+3+2+2+3+3+c)=2,解得c=0
根据方差公式S2= [(1-2)2+(3-2)2+(2-2)2+(2-2)2+(3-2)2+(3-2)2+(0-2)2]=
故填.
练习册系列答案
相关题目