题目内容

【题目】如图,EF∥AD∠1=∠2∠BAC="70"o,求∠AGD

解:∵EF∥AD

∴∠2=∠3( )

∵∠1=∠2

∴∠1=∠3

∴AB∥DG ( )

∴∠BAC+ ="180"o( )

∵∠BAC=70 o∴∠AGD=

【答案】、两直线平行,同位角相等

内错角相等,两直线平行

两直线平行,同旁内角互补

【解析】

试题由EFAD平行,利用两直线平行,同位角相等得到一对角相等,再由已知角相等,等量代换得到一对内错角相等,利用内错角相等两直线平行得到ABDG平行,利用两直线平行同旁内角互补得到两个角互补,即可求出所求角的度数.

试题解析:∵EF∥AD(已知),

∴∠2=∠3(两直线平行,同位角相等),

∵∠1=∠2(已知),

∴∠1=∠3(等量代换),

∴AB∥DG(内错角相等,两直线平行),

∴∠BAC+∠AGD=180°(两直线平行,同旁内角互补).

∵∠BAC=70°(已知),

∴∠AGD=110°

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网