题目内容

【题目】如图,在四边形ABCD中,AC平分∠BAD,过点C作CE⊥AB于点E,且CD=CB,∠ABC+∠ADC=180°.求证:AE=(AB+AD).

【答案】见解析

【解析】试题分析:过CCMADM,于是得到MAC≌△EAC,根据全等三角形的性质得到AM=AE,证RtDMCRtBEC,根据全等三角形的性质得到BE=DM,求出AB+AD=AE+BE+AD=AE+DM+AD=2AM=2AE,即可得出答案..

试题解析证明:过CCMADM,

CEAB,

∴∠M=CEB=90°,

∵∠ABC+ADC=180°,ADC+MDC=180°,

∴∠B=MDC,

AC平分∠BAD,CMAD,CEAB,

CM=CE,MAC=EAC,

MACEAC中,

∴△MACEAC(AAS),

AM=AE,

∵∠M=BEC=90°,

∴在RtDMCRtBEC中,

RtDMCRtBEC(HL),

BE=DM,

AB+AD=AE+BE+AD=AE+DM+AD=2AM=2AE,

AE=(AB+AD).

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网