题目内容
如图11所示,在梯形ABCD中,已知AB∥CD, AD⊥DB,AD=DC=CB,AB=4.以AB所在直线为轴,过D且垂直于AB的直线为
轴建立平面直角坐标系.
(1)求∠DAB的度数及A、D、C三点的坐标;
(2)求过A、D、C三点的抛物线的解析式及其对称轴L.
(3)若P是抛物线的对称轴L上的点,那么使PDB为等腰三角形的点P有几个?(不必求点P的坐标,只需说明理由)
解: (1) DC∥AB,AD=DC=CB,
∠CDB=∠CBD=∠DBA,··············································································· 0.5分
∠DAB=∠CBA,
∠DAB=2∠DBA, ············ 1分
∠DAB+∠DBA=90,
∠DAB=60
, ·········· 1.5分
∠DBA=30,
AB=4,
DC=AD=2, ········· 2分
RtAOD,OA=1,OD=
,··························· 2.5分
A(-1,0),D(0,
),C(2,
). · 4分
(2)根据抛物线和等腰梯形的对称性知,满足条件的抛物线必过点A(-1,0),B(3,0),
故可设所求为 =
(
+1)(
-3) ······························································ 6分
将点D(0, )的坐标代入上式得,
=
.
所求抛物线的解析式为 =
·········································· 7分
其对称轴L为直线=1.······················································································ 8分
(3) PDB为等腰三角形,有以下三种情况:
①因直线L与DB不平行,DB的垂直平分线与L仅有一个交点P1,P1D=P1B,
P1DB为等腰三角形; ················································································· 9分
②因为以D为圆心,DB为半径的圆与直线L有两个交点P2、P3,DB=DP2,DB=DP3, P2DB,
P3DB为等腰三角形;
③与②同理,L上也有两个点P4、P5,使得 BD=BP4,BD=BP5. ···················· 10分
由于以上各点互不重合,所以在直线L上,使PDB为等腰三角形的点P有5个.
![](http://thumb.zyjl.cn/images/loading.gif)