题目内容

如图11所示,在梯形ABCD中,已知ABCDADDBAD=DC=CBAB=4.以AB所在直线为轴,过D且垂直于AB的直线为轴建立平面直角坐标系.

(1)求∠DAB的度数及ADC三点的坐标;

(2)求过ADC三点的抛物线的解析式及其对称轴L

(3)若P是抛物线的对称轴L上的点,那么使PDB为等腰三角形的点P有几个?(不必求点P的坐标,只需说明理由)

解: (1) DCABAD=DC=CB

 ∠CDB=∠CBD=∠DBA,··············································································· 0.5分

     ∠DAB=∠CBADAB=2∠DBA, ············ 1分

DAB+∠DBA=90DAB=60, ·········· 1.5分

  ∠DBA=30AB=4, DC=AD=2,   ········· 2分

RtAODOA=1,OD=,··························· 2.5分

A(-1,0),D(0, ),C(2, ).  · 4分

(2)根据抛物线和等腰梯形的对称性知,满足条件的抛物线必过点A(-1,0),B(3,0),

故可设所求为  =+1)( -3) ······························································ 6分

将点D(0, )的坐标代入上式得, =

所求抛物线的解析式为  =    ·········································· 7分

其对称轴L为直线=1.······················································································ 8分

(3) PDB为等腰三角形,有以下三种情况:

①因直线LDB不平行,DB的垂直平分线与L仅有一个交点P1P1D=P1B

P1DB为等腰三角形;  ················································································· 9分

②因为以D为圆心,DB为半径的圆与直线L有两个交点P2P3DB=DP2DB=DP3P2DBP3DB为等腰三角形;

③与②同理,L上也有两个点P4P5,使得 BD=BP4BD=BP5.  ···················· 10分

由于以上各点互不重合,所以在直线L上,使PDB为等腰三角形的点P有5个.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网