题目内容

【题目】如图,四边形ABCD是边长为1的正方形,EFBD所在直线上的两点.若AE=EAF=135°,则以下结论正确的是(  )

A. DE=1 B. tanAFO= C. AF= D. 四边形AFCE的面积为

【答案】C

【解析】因为四边形ABCD是正方形,所以AB=CB=CD=AD=1,ACBA, ADO=ABO=45°,所以OD=OB=OA=, ABF=ADE=135°,RtAEO,根据勾股定理可得:EO=,DE=,所以A错误,因为EAF =135°, BAD =90°,所以EAF =135°,

BAF+DAE=45°, 所以BAF =AED, 所以ABF ∽△EDA ,所以,,所以BF=,RtAOF,由勾股定理可得:AF=,所以C正确,所以tanAFO=,所以B错误,所以,所以D错误,故选C.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网