题目内容

【题目】已知,ABC为等边三角形,点D为直线BC上一动点(点D不与BC重合).以

AD为边作菱形ADEF,使DAF=60°,连接CF

如图1,当点D在边BC上时,

求证:ADB=AFC请直接判断结论AFC=ACBDAC是否成立;

如图2,当点D在边BC的延长线上时,其他条件不变,结论AFC=ACBDAC是否成立?请写出AFCACBDAC之间存在的数量关系,并写出证明过程;

如图3,当点D在边CB的延长线上时,且点AF分别在直线BC的异侧,其他条件不变,请补全图形,并直接写出AFCACBDAC之间存在的等量关系.

答案⑴①证明:∵△ABC为等边三角形,

AB=ACBAC=60°

∵∠DAF=60°

∴∠BAC=DAF

∴∠BAD=CAF

四边形ADEF是菱形,AD=AF

∴△ABD≌△ACF

∴∠ADB=AFC

结论:AFC=ACBDAC成立.

结论AFC=ACBDAC不成立.

AFC、,ACBDAC之间的等量关系是

AFC=ACBDAC(或这个等式的正确变式)

证明:∵△ABC为等边三角形

AB=AC

BAC=60°

∵∠BAC=DAF

∴∠BAD=CAF

四边形ADEF是菱形

AD=AF

∴△ABD≌△ACF

∴∠ADC=AFC

∵∠ACB=ADCDAC

∴∠AFC=ACBDAC

补全图形如下图

AFCACBDAC之间的等量关系是

AFC=2ACBDAC

(或AFCDACACB=180°以及这两个等式的正确变式).

【解析】

练习册系列答案
相关题目

【题目】阅读下列材料,完成任务:

自相似图形

定义:若某个图形可分割为若干个都与它相似的图形,则称这个图形是自相似图形.例如:正方形ABCD中,点E、F、G、H分别是AB、BC、CD、DA边的中点,连接EG,HF交于点O,易知分割成的四个四边形AEOH、EBFO、OFCG、HOGD均为正方形,且与原正方形相似,故正方形是自相似图形.

任务:

(1)图1中正方形ABCD分割成的四个小正方形中,每个正方形与原正方形的相似比为   

(2)如图2,已知ABC中,ACB=90°,AC=4,BC=3,小明发现ABC也是“自相似图形”,他的思路是:过点C作CDAB于点D,则CD将ABC分割成2个与它自己相似的小直角三角形.已知△ACD∽△ABC,则ACD与ABC的相似比为   

(3)现有一个矩形ABCD是自相似图形,其中长AD=a,宽AB=b(a>b).

请从下列A、B两题中任选一条作答:我选择   题.

A:①如图3﹣1,若将矩形ABCD纵向分割成两个全等矩形,且与原矩形都相似,则a=   (用含b的式子表示);

如图3﹣2若将矩形ABCD纵向分割成n个全等矩形,且与原矩形都相似,则a=   (用含n,b的式子表示);

B:①如图4﹣1,若将矩形ABCD先纵向分割出2个全等矩形,再将剩余的部分横向分割成3个全等矩形,且分割得到的矩形与原矩形都相似,则a=   (用含b的式子表示);

如图4﹣2,若将矩形ABCD先纵向分割出m个全等矩形,再将剩余的部分横向分割成n个全等矩形,且分割得到的矩形与原矩形都相似,则a=   (用含m,n,b的式子表示).

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网