题目内容
(2006•襄阳)如图,在边长为a的正方形中挖掉一个边长为b的小正方形(a>b),把余下的部分剪拼成一矩形如图,通过计算两个图形(阴影部分)的面积,验证了一个等式,则这个等式是( )A.(a-b)(a+2b)=a2-2b2+ab
B.(a+b)2=a2+2ab+b2
C.(a-b)2=a2-2ab+b2
D.(a-b)(a+b)=a2-b2
【答案】分析:左图中阴影部分的面积=a2-b2,右图中矩形面积=(a+b)(a-b),根据二者相等,即可解答.
解答:解:由题可得:(a-b)(a+b)=a2-b2.
故选D.
点评:此题主要考查了乘法的平方差公式.即两个数的和与这两个数的差的积等于这两个数的平方差,这个公式就叫做平方差公式.
解答:解:由题可得:(a-b)(a+b)=a2-b2.
故选D.
点评:此题主要考查了乘法的平方差公式.即两个数的和与这两个数的差的积等于这两个数的平方差,这个公式就叫做平方差公式.
练习册系列答案
相关题目