题目内容

如图,四边形OABC是一张放在平面直角坐标系中的矩形纸片,点A在x轴上,点C在y轴上,且线段OA、OC(OA>OC)是方程x2-18x+80=0的两根,将边BC折叠,使点B落在边OA上的点D处.
(1)求线段OA、OC的长;
(2)求直线CE与x轴交点P的坐标及折痕CE的长;
(3)是否存在过点D的直线l,使直线CE与x轴所围成的三角形和直线l、直线CE与y轴所围成精英家教网的三角形相似?如果存在,请直接写出其解析式并画出相应的直线;如果不存在,请说明理由.
分析:(1)利用式子相乘法把方程左边分解为两一次因式积的形式,然后根据两数相乘积为0,两数中至少有一个为0,转化为两个一元一次方程,分别求出方程的解得到原方程的解,根据OA大于OC,即可得到OA及OC的长;
(2)由折叠可知三角形EBC与三角形EDC全等,根据全等三角形的对应边相等得到EB=ED,CB=CD,又矩形ABCD对边相等,从而得到CD的长,再由OC的长,利用勾股定理求出OD的长,进而求出AD的长,在直角三角形AED中,设EA=x,则DE=8-x,再由AD的长,利用勾股定理列出关于x的方程,求出方程的解得到AE的长,即为E的纵坐标,而OA的长即为E的横坐标,确定出E的坐标,同时得到BE的长,再由BC的长,在直角三角形BCE中,利用勾股定理求出折痕CE的长;
(3)存在,应该有两条如图:
①直线BF,根据折叠的性质可知CE必垂直平分BD,那么∠DGP=∠CGF=90°,而∠CFG=∠DPG(都是∠OCP的余角),由此可得出两三角形相似,那么可根据B、D两点的坐标求出此直线的解析式.
②直线DN,由于∠FCO=∠NDO,那么可根据∠OCE即∠BEC的正切值,求出∠NDO的正切值,然后用OD的长求出ON的值,即可求出N点的坐标,然后根据N、D两点的坐标求出直线DN的解析式.
解答:解:(1)方程x2-18x+80=0,
因式分解得:(x-8)(x-10)=0,
即x-8=0或x-10=0,
解得:x1=8,x2=10,
∴OA=10,OC=8;

(2)由折叠可知:△EBC≌△EDC,∴EB=ED,
∴CB=CD,又矩形OABC,∴AB=OC=8,
∴CB=CD=OA=10,又OC=8,
在Rt△OCD中,根据勾股定理得:OD=
CD2-OC2
=6,
∴AD=OA-OD=10-6=4,
又BE+EA=AB=8,且EB=ED,精英家教网
∴DE+EA=8,即DE=8-EA,
在Rt△AED中,设AE=x,则DE=8-x,又AD=4,
根据勾股定理得:(8-x)2=x2+16,
整理得:16x=48,
解得:x=3,
则E的坐标为(10,3),又C(0,8),
设直线CE的解析式为y=kx+b,
将C与E坐标代入得:
b=8
10k+b=3

解得:k=-
1
2
,b=8,
则直线CE解析式为y=-
1
2
x+8,
令y=0求出x=16,即P坐标为(16,0);
此时BE=BA-EA=8-3=5,又BC=OA=10,
在Rt△BCE中,根据勾股定理得:
CE=
BE2+BC2
=5
5


(3)存在.满足条件的直线l有2条:y=-2x+12,y=2x-12.
如图2:准确画出两条直线.
点评:此题综合了一元二次方程的解法,矩形的性质,折叠的性质,勾股定理,相似三角形的判定,以及一次函数的性质,考查了学生综合解决问题的能力,出现折叠问题时,常常利用全等三角形的性质及勾股定理来解决问题,本题第三问属于探究存在性问题,一般利用假设验证法,即先假设结论成立,看是否导致矛盾,还是达到与已知条件相符,从而确定探究的结论是否存在.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网