题目内容
【题目】运用图形变化的方法研究下列问题:如图,AB是⊙O的直径,CD,EF是⊙O的弦,且AB∥CD∥EF,AB=10,CD=6,EF=8。则图中阴影部分的面积是( )
A.
B.
C.
D.
【答案】A
【解析】解:作GH⊥AB,交CD于G,交EF于H,连接OC、OD、OE、OF.
∵⊙O的直径AB=10,CD=6,EF=8,且AB‖CD‖EF,
∴OG⊥CD,OH⊥EF,
∴∠COG=∠DOG,∠EOH=∠FOH,
∴OE=OF=OC=OD=5,CG=3,EH=4,
∴OG=4,OH=3,
∵AB‖CD‖EF,
∴S△OCD=S△BCD , S△OEF=S△BEF ,
∴S阴影=S扇形ODC+S扇形OEF=S半圆=π×52=π.
故答案是:π.
【考点精析】解答此题的关键在于理解垂径定理的推论的相关知识,掌握推论1:A、平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧B、弦的垂直平分线经过圆心,并且平分弦所对的两条弧C、平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧;推论2 :圆的两条平行弦所夹的弧相等,以及对扇形面积计算公式的理解,了解在圆上,由两条半径和一段弧围成的图形叫做扇形;扇形面积S=π(R2-r2).
练习册系列答案
相关题目