题目内容
【题目】如图,已知△ABC中,∠B=∠C,AB=8厘米,BC=6厘米,点D为AB的中点.如果点P在线段BC上以每秒2厘米的速度由B点向C点运动,同时,点Q在线段CA上以每秒a厘米的速度由C点向A点运动,设运动时间为t(秒)(0≤t≤3).
(1)用的代数式表示PC的长度;
(2)若点P、Q的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由;
(3)若点P、Q的运动速度不相等,当点Q的运动速度a为多少时,能够使△BPD与△CQP全等?
【答案】(1)PC= 6﹣2t;
(2)△BPD和△CQP全等,理由见解析;
(3)VQ厘米/秒.
【解析】
试题分析:(1)先表示出BP,根据PC=BC﹣BP,可得出答案;
(2)根据时间和速度分别求得两个三角形中的边的长,根据SAS判定两个三角形全等.
(3)根据全等三角形应满足的条件探求边之间的关系,再根据路程=速度×时间公式,先求得点P运动的时间,再求得点Q的运动速度;
解:(1)BP=2t,则PC=BC﹣BP=6﹣2t;
(2))△BPD和△CQP全等
理由:∵t=1秒∴BP=CQ=2×1=2厘米,
∴CP=BC﹣BP=6﹣2=4厘米,
∵AB=8厘米,点D为AB的中点,
∴BD=4厘米.
∴PC=BD,
在△BPD和△CQP中,
,
∴△BPD≌△CQP(SAS);
(3)∵点P、Q的运动速度不相等,
∴BP≠CQ
又∵△BPD≌△CPQ,∠B=∠C,
∴BP=PC=3cm,CQ=BD=4cm,
∴点P,点Q运动的时间t==秒,
∴VQ===厘米/秒.
【题目】学习完一次函数后,小荣遇到过这样的一个新颖的函数:y=|x﹣1|,小荣根据学校函数的经验,对函数y=|x﹣1|的图象与性质进行了探究.下面是小荣的探究过程,请补充完成:
(1)列表:下表是y与x的几组对应值,请补充完整.
x | … | ﹣3 | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | … |
y | … | 4 | 2 | 1 | … |
(2)描点连线:在平面直角坐标系xOy中,请描出以上表中各对对应值为坐标的点,画出该函数的图象;
(3)进一步探究发现,该函数图象的最低点的坐标是(1,0),结合函数的图象,写出该函数的其他性质(一条即可): .