题目内容
【题目】如图,已知⊙O与等腰△ABD的两腰AB、AD分别相切于点E、F,连接AO并延长到点C,使OC=AO,连接CD、CB.
(1)试判断四边形ABCD的形状,并说明理由;
(2)若AB=4cm,填空:
①当⊙O的半径为 cm时,△ABD为等边三角形;
②当⊙O的半径为 cm时,四边形ABCD为正方形.
【答案】(1)菱形,理由见解析;(2)①;②2.
【解析】分析:(1)由AB、AD分别相切于点E、F,得到∠EAO=∠FAO,于是得到OD=OB,根据AO=OC,推出四边形ABCD是平行四边形,于是得到结论;
(2)①连接OE由切线的性质得到OE⊥AD,由△ABD为等边三角形,得到BD=AB=AD=4,根据直角三角形的性质得到结论由正方形的性质得到∠DAO=∠ADO=45°,由AD=AB=4,得到OA=OD=2,根据等腰直角三角形的性质即可得到结论.
详解:(1)四边形ABCD是菱形,
理由如下:∵AB、AD分别相切于点E、F,
∴∠EAO=∠FAO,
∴OD=OB,
∵AO=OC,
∴四边形ABCD是平行四边形,
∵AB=AD,
∴ABCD是菱形;
(2)①当⊙O的半径为时,△ABD为等边三角形;
连接OE,∵AD切⊙O于点E,
∴OE⊥AD,
∵△ABD为等边三角形,
∴BD=AB=AD=4,
∴∠DAO=30°,
∴OD=BD=2,AO=2
,
∴OE=AO=
,
∴当⊙O的半径为时,△ABD为等边三角形;
故答案为:;
②当⊙O的半径为2cm时,四边形ABCD为正方形;
如图,∴∠DAO=∠ADO=45°,
∵AD=AB=4,
∴OA=OD=2,
由(2)知,OE⊥AD,
∴OE=AE=2,
∴当⊙O的半径为2cm时,四边形ABCD为正方形;
故答案为:2.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目