题目内容
分析:首先过点A作FG的平行线分别交DF、DG的延长线于点M、N,得出AM=AN,再利用三角形相似得出对应边的关系,从而得出相等的线段.
解答:
解:有相等的线段:HG=HF
过点A作FG的平行线分别交DF、DG的延长线于点M、N
则∠AMF=∠BDF
由切线长定理知BF=BD、AF=AE.
所以∠BDF=∠BFD,
又∵∠BFD=∠AFM,
∴∠AMF=∠AFM,
∴AM=AF,
同理:AN=AE,
∴AM=AN,
又FG∥MN,
∴△DFH∽△DMA,
=
,
同理:
=
,
∴
=
,
∴HG=HF.
过点A作FG的平行线分别交DF、DG的延长线于点M、N
则∠AMF=∠BDF
由切线长定理知BF=BD、AF=AE.
所以∠BDF=∠BFD,
又∵∠BFD=∠AFM,
∴∠AMF=∠AFM,
∴AM=AF,
同理:AN=AE,
∴AM=AN,
又FG∥MN,
∴△DFH∽△DMA,
| HF |
| AM |
| DH |
| DA |
同理:
| HG |
| AN |
| DH |
| DA |
∴
| HF |
| AM |
| HG |
| AN |
∴HG=HF.
点评:此题主要考查了相似三角形的判定与性质,以及切线长定理和三角形的内心等知识,作平行线构造相似三角形是几何问题中一个常用方法,应注意有意识的应用.
练习册系列答案
相关题目
| A、12 | ||
| B、14 | ||
C、10+2
| ||
D、10+
|